Potentially Habitable Planets Gliese 667 Cc
Gliese 667 Cc (also known as GJ 667Cc, HR 6426Cc, or HD 156384Cc) is an exoplanet orbiting within the habitable zone of the red dwarf star Gliese 667 C, which is a member of the Gliese 667 triple star system, approximately 23.62 light-years away in the constellation of Scorpius. The exoplanet was found by using the radial velocity method, from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star.
Gliese 667 Cc is a super-Earth, an exoplanet with a mass and radius greater than that of Earth, but smaller than that of the giant planets Uranus and Neptune. It is heavier than Earth with a minimum mass of about 3.7 Earth masses. The equilibrium temperature of Gliese 667 Cc is estimated to be 277.4 K . It is expected to have a radius of around 1.5 R⊕, dependent upon its composition.
You Can Be A Supporter Here!!
The planet orbits a red dwarf star named Gliese 667 C, orbited by a total of two planets. The star is part of a trinary star system, with Gliese 667 A and B both being more massive than the smaller companion. Gliese 667 C has a mass of 0.31 M☉ and a radius of 0.42 R☉. It has a temperature of 3700 K, but its age is poorly constrained, estimates place it greater than 2 billion years old. In comparison, the Sun is 4.6 billion years old and has a surface temperature of 5778 K. This star is radiating only 1.4% of the Sun's luminosity from its outer atmosphere. It is known to have a system of two planets: claims have been made for up to seven, but these may be in error due to failure to account for correlated noise in the radial velocity data. Since red dwarfs emit little ultraviolet light, the planets likely receive minimal amounts of ultraviolet radiation.
Gliese 667 Cc is the second confirmed planet out from Gliese 667 C, orbiting along the middle of the habitable zone. From its surface, the star would have an angular diameter of 1.24 degrees and would appear to be 2.3 times the visual diameter of our Sun as it appears from the surface of the Earth. Gliese 667 C would have a visual area 5.4 times greater than that of the Sun but would still only occupy 0.003 percent of Gliese 667 Cc's sky sphere or 0.006 percent of the visible sky when directly overhead.
The apparent magnitude of the star is 10.25, giving it an absolute magnitude of about 11.03. It is too dim to be seen from Earth with the naked eye, and even smaller telescopes cannot resolve it against the brighter light from Gliese 667 A and B.
Based on black body temperature calculation, GJ 667 Cc should absorb similar but slightly more overall electromagnetic radiation than Earth, making it a little bit warmer (277.4 K) and consequently placing it slightly closer to the "hot" inner edge of the habitable zone than Earth (254.3 K).According to PHL, Gliese 667 Cc is (as of July 2018) the fourth most Earth-like exoplanet located in the conservative habitable zone of its parent star.
Its host star is a red dwarf, with about a third as much mass as the Sun. As a result, stars like Gliese 667 C have the ability to live up to 100–150 billion years, 10–15 times longer than the Sun will live.
The planet is likely tidally locked, with one side of its hemisphere permanently facing towards the star, while the opposite side is shrouded in eternal darkness. However, between these two intense areas, there would be a sliver of habitability – called the terminator line, where the temperatures may be suitable (about 273 K) for liquid water to exist. Additionally, a much larger portion of the planet may be habitable if it supports a thick enough atmosphere to transfer heat to the side facing away from the star.
However, in a 2013 paper, it was revealed that Gliese 667 Cc is subject to tidal heating 300 times that of Earth. This in part is due to its small eccentric orbit around the host star. Because of this, the chances of habitability may be lower than originally estimated.
Σχόλια
Δημοσίευση σχολίου